Sign up to receive the latest BMP news.
Assess and Map Your Soils
May 3, 2018 by NYS BMP ·
Assessing soil health is a critical aspect of best management practices implementation, as underscored in the BMP statement:
Determine accurate supplemental nutrient needs based on soil chemical and physical analysis. On sand-based areas, consider foliar testing as a diagnostic tool.
The soil on your property has enormous environmental, and ultimately, economic value. You cannot implement a fully aligned BMP program until soils are properly assessed. Soil health, by definition, includes the physical, chemical and biological properties of the soil. Management efforts typically focus primarily on maximizing the parameters in each of these categories for agricultural crop production. However,targets for these soil health measurements are becoming clearer, which will assist superintendents in growing healthy, dense turf.
To begin a soil health assessment, start with the Web Soil Survey. UW-Madison Professor Doug Soldat published a great article in 2015 outlining the importance and practical use of the Web Soil Survey tool: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. Here’s my favorite quote from the article:
“The Web Soil Survey is a powerful tool that has many applications for site assessment and planning. The maps can be a powerful communication tool to explain to your golfers, parents, customers, board members, or supervisors about the challenges of growing turf on your site.”
Soil survey maps provide excellent information for your records to justify certain needs or assist in diagnosing problems. Of course, they can also be used to target soil samples from areas with known soil type differences to develop a more practical map that includes additional physical, and some chemical, properties. Knowing these properties is critical to assessing water quality risks from nutrient applications (e.g. potential for leaching), to determining the need for nutrient applications and to interpreting overall soil health.
Of course, more detailed chemical and physical analyses based on laboratory results are useful on large managed turf areas such as fairways and roughs, where large scale nutrient applications are made and greater risk to water quality (e.g. runoff or leaching) exists. Currently, the level of interpretation and practical value of chemical and biological tests is limited. However, it is important to know the physical properties, drainage class, and pH of soils on your entire property that are managed in some way, from native areas to putting surfaces. Therefore, consider the following incremental approach to BMP implementation when developing a nutrient management program:
A good practice is to assess the chemical and physical analysis of your regularly fertilized soils using a Minimum Level for Sustainable Nutrition (MLSN) Guideline interpretation, as well as looking at overall turf quality and growth, when developing a nutrient management program. Make accurate supplemental nutrient applications to targeted areas of established need.
A better practice is to use the Web Soil Survey as a guide to classify and sample all soils on the property using the MLSN interpretation and performance variables (quality and growth). Make supplemental applications of nutrients based on large-scale mapping in targeted areas of well-established needs.
The best practice would be to implement the above Web Soil Survey-driven sampling program and use appropriate interpretation and performance variables as layers in a GIS database built from the sampling locations. Use this GIS database of soil properties for GPS-based Variable Rate Application equipment for precise supplemental nutrient applications to targeted areas of well-established need.
New Case Study Video
Visit the NYS BMP Youtub channel to view the new case study video on the low cost washpad demonstration conducted at Locust Hill Country Club: https://tinyurl.com/y8m8o44t.
“Finding the Baseline”: A Simple Approach to Water Quality Monitoring
March 21, 2018 by NYS BMP ·
As winter fades and the Spring rains arrive, a significant amount of water will flow along the surfaces of our golf courses and into wetlands, streams, rivers, lakes, and the spectacular estuaries of Long Island. In fact, New York State is associated with more than 15 individual watersheds (see inset to find your watershed).
In some parts of the world, regulatory agencies can impose strict water quality reporting requirements on land managers. In fact, strict water quality reporting has been considered within the Chesapeake Bay Watershed, the Susquehanna River Watershed, and is undoubtedly of interest to those involved in the various initiatives for nutrients and pesticides on Long Island.
As good land managers, it is vital that we understand any potential impact we could have on our local water bodies, and if possible, the groundwater below the land we manage. A good place to begin might be to test the water that passes through the golf course during the spring rainy period. In fact, one of the “Getting Started BMPs” states “Assess current surface and groundwater quality.”
Establishing baseline data is critical for representative water bodies and water sources that may be impacted by golf course operations. Baseline tests should be conducted 4x/year for the first year and should be taken from the same locations every time to ensure consistency.
The first step is to identify two sampling locations for testing flowing surface water ( creek/stream/river): one location where the water enters the property and the second where the water exits. The sample should not be collected directly from the side of the waterbody as sediment can contaminate the sample. If you must collect water near the edge of a water body, use a dipper or other type of extension to take the sample away from the shoreline. To collect the sample, use clean plastic containers that will hold at least a 100 ml and with lids that make a tight seal. Rinse the bottle (including the lid) several times with the water to be tested. Fill the sample bottle completely and eliminate all head space (no air space). Be sure the lid is tight so that samples do not leak during transit.
If possible, collect and ship samples to the laboratory on the same day. The same laboratory you already use for soil testing may offer water quality testing services as well. A basic analysis will include results for at least pH, nitrogen, phosphorus, and specific conductivity.
Two sample submissions collected four times in the first year might require about four total labor hours for collecting samples and sending out for analysis. Lab fees for basic analysis for the baseline data should be a couple of hundred dollars. More information on this BMP is available at https://nysgolfbmp.cals.cornell.edu/water-quality-monitoring/.